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ABSTRACT

There has been a recent interest in determining high statistical reliability in risk
assessment of aircraft components. This report identifies the potential consequences of
incorrectly assuming a particular statistical distribution for stress or strength data used in
obtaining the high reliability values. The computation of the reliability is defined as the
probability of the strength being greater than the stress over the range of stress values.
This method is often referred to as the stress-strength model.

A sensitivity analysis was performed involving a comparison of reliability results in
order to evaluate the effects of assuming specific statistical distributions. Both known
population distributions, and those that differed slightly from the known, were considered.
Results showed substantial differences in reliability estimates even for almost nondetectable
differences in the assumed distributions. These differences represent a potential problem
in using the stress-strength model for high reliability computations, since in practice it is
impossible to ever know the exact (population) distribution.

An alternative reliability computation procedure is examined involving determination of
a lower bound on the reliability values using extreme value distributions. This procedure
reduces the possibility of obtaining nonconservative reliability estimates. Results indicated
the method can provide conservative bounds when computing high reliability.
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INTRODUCTION

There has been an interest in quantitative reliability-based structural design t‘or many
years. An carly example is the structural reliability dwelopmeat by Freudenthal.! Stress-
strength reliability computations are a principal consideration in structural reliability design.
Relmbahty n%cthods have been considered for many structural apphcatlons including: civil
engineering,” nuclear reactors,” fixed wmg aircraft, rotorcraft,’ and space vehicle propulsion
systems.® Very high structural relishility is expected to be achieved for most applications. A
reliability goal of 0.9(9) per ﬂlght hour was suggested in 1955 by Lundberg for fixed wing
civil aircraft. Reoeng' unng reasoning similar to that of Lundberg, cited a reliabil-
ity goal of 0.9y per ﬂight for fixed wing military aircraft. The U.S. Army has 1gst1tuted a
new structuul(atlgue integrity criterion for rotorcraft which has been interpreted” as a re-
quirement for a lifetime reliability of 0.9¢s).

The use of advanced materials whose structural propertics are best characterized on a
statistical basis appears to be a stimulant for increased interest in statistical-based structural
design for airborne structures.

A significant feature associated with predictions of structural reliability is that the
consequence of a failure event may be more than reduced system performance or the
inconvenience of a system being out of service; structural failure can be catastrophic in
terms of loss of life and property. In this context it is imperative to evaluate the sensitiv-
ity of structural rchabnhty predictions to uncertainties. It appears that this issue has re-
ceived little attention except for a brief note by Harris and Soms” and a recent
presentation by Berens.

There are my issues to be faced in obtaining quantitative structural reliability predlc-
tions. Such issues include system complexity (many components, multiple failure modes in
each component, and interdependence of component behavior), sample or data set size
associated with structural loading spectrum conditions and with mechanical properties, and
the basis for characterizing structural qualification tests (the number of duplicate specimens
and methods for compensation for untested effects such as the effect of environment).

In addntion, when predictions of structural behavior are required in the high reliability
range, since sufficiently large data sets are usually not available, it is necessary to use
parametric modeling methods. 'Assumed parametric functions permit extrapolation from
available data to determine the probability of failure. Since the probability of failure is
extremely small, this will always involve substantial extrapolation from what can be ob-
served experimentally. The estimated reliability will therefore depend strongly on the as-
sumed parametric probability density function (PDF). Slight deviation from the assumed
model in tail regions can have a dramatic effect on high reliability estimates.

In fact, one might argue, as does Freudenthal,!? that because of the extrapolation in-
volved, statistically-based high reliability calculations for complex systems must always be
suspect:

"When dealing with probabilities a clear distinction should be made between conditions
arising in design of inexpensive mass products in which the probability figures are derived
by statistical interpretation of actual observations or measurements (since a sufficiently
large number of observations are actually obtainable), and conditions arising in design of




structures or complex systems. In the latter, probability figures are used simply as a scale or
measure of reliability that permits the comparison of alternative: designs. The figures can
never be checked by observations or measurement since they are obtained by extrapolations
so far beyond any possible range of observation that such extrapolation can no longer be
based on statistical arguments but could only be justified by relevant physical reasoning.
Under these conditions the absolute probability figures have no real significance ...."

Nonparametric stress-strength procedures do not require specific parametric assumptions,
and so it might be hoped that such procedures could circumvent this difficulty. However,
Johnson!? has noted that "The nonparametric approach has one serious drawback. In return
for its distribution free property, it is not possible to establish high reliability even with mode-
rate sample sizes." With respect to the use of parametric models, Box!> has observed "all
models are wrong, but some are useful,” meaning that no parametric statistical model should
be accepted uncriticall. Whenever a model is used, it is the obligation of the analyst to in-
vestigate the consequences of departures fro? an assumed model which, though small, are con-
sistent with available data. Harris and Soms” has illustrated a "serious problem in the use of
stress-strength relationships in estimating reliability.” In particular, "stress-strength models in
reliability theory are highly sensitive to small perturbations in extreme tails." The perturba-
tions considered may arise from an alternative mode of failure such as the presence of a flaw
in a structure. Further, they note that the problem cannot be eliminated unless “astronomi-
cally large sample sizes are employed.”

In the following, the examination of the sensitivity of structural reliability estimates fo-
cuses attention on one of the previously cited issues: the selection of a parametric PDF.
The examination of the sensitivity of stress-strength reliability estimates is extended to addi-
tional perturbation effects. The sensitivity of reliability estimates to the selection of paramet-
ric models is considered with emphasis on graphical representations. The results are
" evaluated with regard to the usefulness of parametric stress-strength models for application to
the high reliability regime of 0.9) to 0.9(7) when the consequence of failure may be cata-
strophic. An alternative reliability computation procedure is examined involving determination
of a lower bound on reliability which can be obtained independently of the assumed PDFs.

STRESS-STRENGTH MODEL

The statistical reliability as referred to in this report is determined in the following man-
ner. Shown in Figure 1 is the stress-strength model where f>(s) and f;(S) represent the
PDFs for the applied stress s and material strength S.

Since the joint probability dR for the strength being greater than s; can be written as,
dR = f, (s1) ds J:: f; (5)dS (1)
then"_’:t:ﬁbe reliability for all s values is

R=J" () [j:’ f1(S)dS] ds. @
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Normal stress-strength model
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PROBABILITY DENSITY FUNCTIONS

A wide variety of PDFs may be applied in obtaining R values. Some examples of PDFs
are as follows:

The PDF most often used in stress-strength models is the normal distribution (see Figure 1),

' 2
= el _exp{-1(S-#
fu(S)—N(s,a’)-amap{ 2 (354 } ®
where - ® < S < w, 4 > 0, and 0 > 0. The mean of the population is u, and the stan-

dard deviation o for this model.

A model which is more easily justified on physical grounds is the Weibull PDF,

o=t ] e

where S > 0, a > 0, and 8 > 0. Despite the relevance of the Weibull distribution!* to the

strength of brittle materials, it is not often used, possibly because it is more difficult com-
putationally to obtain reliability values than with the normal model.
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If S follows the Weibull PDF, then In(S) will have an extreme value distribution with PDF

foin ) = g exp |5 emp (2571 |. | 0
The distribution of - In(s) is
foax® = ; exp - (12 - e - =2)]- ®)

Both of the above formulas are referred to as extreme value distributions. The use of ex-
treme value distributions in a stress-strength model is illustrated in Figure 2. The extreme
value distribution parameters are related to the Weibull parameters as follows:

b=% and u = —-loga

In order to obtain the population Weibull shape and scale parameters 8 and a from the
known population mean 4 and standard deviation o, the following approximations are suggested:

B =127 u/o - 0.56 ' @)
and
a=u/T (%+ 1) .

Stress-strength: extreme vaiue
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Figure 2. Stress-strength extreme value functions,
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The functions defined in Equations 3, 4, 5, and 6 clearly have different shapes and they
exhibit dramatically different tail bebavior. Since reliability estimates depend strongly on the
extreme upper tail of the stress PDF and the extreme lower tail of the strength PDF, the
choice of model will typically have a substantial effect on the reliability estimate. For exam-
ple, R is usually higher when calculated from the normal distribution than when the extreme
value model is assumed.

Applying PDFs that are capable of obtaining accurate high reliability estimates (e.g., 0.9))
requires prior knowledge of the functional form of the population PDF in addition to the
availability of large data sets (e.g., 1,000 replicate specimens). For lower reliability values
(c.g., 0.9), a goodness-of-fit test for PDF identification with a moderate amount of data is gen-
crally adequate. The consequence of incorrect PDF selection and limited sample sizes are dis-
cussed later in this report.

METHODS FOR COMPUTING RELIABIITY R

In determining R from Equation 2 it should be noted that the integration process does
not determine an arca. The area A described by the intersecting functions in Figure 3 does
not represent a 1 - R failure probability. The area A is the probability (P) that either S < T
or s > T, that is,

A=PS<T + Ps>T), (8)

where T is the point of intersection of the two functions. The area A is obviously not the
same as the 1 - R from Equation 2 which determines P(S > s) jointly with P(s).

Stress-strength reliability model: normai-normal
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Numerical Integration

Numerical integration procedires are usually suggested if & closed form solution of
Equation 2 is not available. The numerical integration process involves repeated application
of a method such as Simpson’s Rule. The inner integral in Equation 2 is evaluated numeri-
cally for each ordered s; value i = 1, ..; n resulting in an Ij(i) array of values. Each of
I;(i) is then multiplied by the corresponding f(s;)) forming another array In(i) = fa(sj)I1(i)-

R is obtained from the I, array by reapplying the numerical integration method. This process
will usually provide accurate results for 51 s n < 101, where n is the number of mesh
points in the integration process. Simulation results showed that the limits of integration can
be obtained from * six standard deviations from the mean.

Closed form solutions are available when the assumed stress and strength PDFs are both
normal or both Weibull.

R Computation from Closed Form Solution

If both stress and strength data can be represented by normal PDFs N(u,, 0,2) and
N(us, asz), respectively, then,

R=PS>s) = ® (ﬁog’}-—v_:i'_:z—) ©
+ 03

where (®) is the standard N(0, 1) normal cumulative distribution function, x4, and ug are
means, and o,- and og” are variances of the stress and strength, respectively.

If both f; and f, in Equation 2 are Weibull with different scale parameters a; and a,
but with a common shape parameter S, then the integration indicated in Equation 2 gives the
following closed form ealrpr«cssion12

1
R= —F (10)
1+ (2L
a
The common shape parameter means that both the stress and strength are skewed in the
same way, which is a serious limitation. It is much more reasonable to have a stress distribu-

tion with a heavy upper tail and a strength distribution with a heavy lower tail, but this is
not possible unless the shape parameters can be varied separately.

Nonparametric Method

This method does not assume a PDF for either stress or strength data. It determines reli-
ability from the ordered array of m stress (s) and n strength (S) values, where each of the S
values are compared with all s values. R is the proportion of times S > s for the total num-
ber of comparisons, that is

1 m n
R=_— E _ lai, where q; = {%,Si:sj (11)



This method is not useful for obtaining high reliability even for relatively large data sets.
It is obvious from Equation 11 that for high reliability calculations, mn must be very large;
for example, 10° would be required in order to obtain R of 0.9¢).

The Weibull, normal, or other parametric PDFs can provide estimates of high R values
because of their ability to extrapolate beyond the available empirical data. Unfortunately, the
amount of extrapolation dependency determines the magnitude of relative error in R.

CONTAMINATED PROBABILITY DENSITY FUNCTIONS

In order to illustrate the sensitivity of high reliability calculations to small deviations from
assumed models, we will take the following approach. Consider the situation where with a
high probability of 1 - ¢, specimens are obtained from a primary PDF, while with probability ¢,
specimens come from a secondary PDF. This probability model is referred to as a contaminated
model. The secondary component is called the contamination, and the probability £ is the
amount of contamination.

An example may help clarify this idea. Consider the situation where 97% of the time
a specimen is obtained from a population of "good" specimens while the remaining 3% of
the time consistently lower strength measurements are obtained, either due to manufactur-
ing defects or to faulty testing. The primary PDF would correspond to the "good" speci-
mens, the contamination would represent the distribution of flawed specimens, and the
amount of contamination would be ¢ = 0.03.

The following procedure is introduced in order to examine the effects of computing
high reliability values when uncertainties exist in selecting the functions for the stress-
strength model. Initially, high rehablhty values are obtained from the normal stress-
strength model (see Equation 9) using known PDFs with different mean values but equal
coefficients of variation. The difference in mean values was determined from the required
level of high reliability. Another R value is then obtained by applying this known distribu-
tion with a small amount of contamination (¢) in order to show an almost undetectable
difference graphically between the true and contaminated PDFs. The effects of this differ-
ence in the reliability computation are discussed in the following sections in order to exam-
ine the sensitivity of the stress-strength model to the assumed PDFs. This procedure
provides an effective way of demonstrating the effects of assuming a specific PDF in deter-
mining high reliability.

The normal PDF with variance contamination for the strength data is,
Ns, (s, ov)=(1-€) N (us, 05%) + eN (s, K1 057 , (12)

where us and asz are the mean and variance for the uncontaminated normal strength distribu-
tion, K; is a scaling factor, and 100 £ is the percent contamination.

The strength distribution with location contamination is

Ns; (L 052 = (1 -€)N(us, 0s%) +eN(us £K; o, 05+?) , (13)
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where K, is a scaling factor for the mean us, and the sign determines which tail of the distri-
bution is to be contaminated aggr ostz is the variance on ug * Kzos. The location contami-
nated PDF (see Equation 13) cin provide reliability estimatésto represent the potential of a
secondary failure mode. Contamination of the stress distribution would be similar to that in
Equations 12 and 13. It was not necessary to include contaminated distributions for both
stress and strength in order to show substantial reduction in the high reliability estimates.

The strength PDF contamination was sufficient.

A linear relationship to obtain R for the reliability models when a combination of both
contaminated and uncontaminated stress and strength normal PDFs can be written as,

R =(1-€) (1-&) Roo + €1 (1 -€2) Ryo + &2 (1-€1) Ro1 + &1 &2 Rny (14)

where 100 &£, and 100 £, are percent contamination for the stress and strength distribution,
and the R;j; values are obtained for the case of variance contamination only; that is,

HS —Us

Rjj = ® | ——|. 15

ol *
§ T %

and for location contamination, RKL would be

Hsy, — Bsg
Ry = @ (___) (16)
“ Vos? + o

os

Equation 14 can be extended to include all conibinations of variance and location contamina-
tion simultaneously, but it was not necessary for this sensitivity analysis. In Equation 16, if i,
j = 0, then there is no contamination; for i, j = 1, then both stress and strength are contami-
nated. For example, if there is contamination of variance of strength only, then

R=(1-€)Rog + & Ry 17
where
BSy — Hs,y
Ro =@ ( r———*"-)
and
HSy — Hay
Ro1 = @ ( ,__-—-)

LOWER RELIABILITY BOUND

A conservative lower bound on the reliability is introduced in order to protect against
incorrectly identifying statistical functions in determining high R. The bound is obtained
from a method proposed by Bolotin,ls and modified to employ the extreme value PDFs

511



(sec Equations 5 and 6). The method provides more conservative bounds than would be ob-
tained from standard methods which are dependent on the assumed PDFs. The selection of
the extreme value functions provides additional conservatism because of their heavier tails.
The method is simple to use and is not restricted to any specified PDF. The reliability
bounds are (see Figure 4),

1-W;Wp>R>(1-W)(1-W) (18)

where [(1 - W1)(1 - W3)] represents the probability s < s; and S > S;, which can be a
somewhat conservative estimate.

Stress-strength extreme vaiue model: Bolotin R-bound
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Figure 4. Bolotin reliability bounds using extreme value functions.
The lower bound is then,
RL>(1-W)(1-Wy), (19)

where
Wy =J; f()ds and W = e (s)as

for any choice of s; = S;.
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GOODNESS-OF-FIT TEST

The capability of determining desired PDFs from empirical data was investigated. The
choice of PDF will be shown in the following sections to havé a substantial effect on high re-
liability computations, so it is important to examine model selection procedures. A statistical
test!® of goodness-of-fit was introduced in addition to graphical displays in order to select the
desired PDFs. Empirical data used in the investigation was obtained by randomly selecting a
relatively large number of values from a known normal PDF. A comparison of known contam-
inated PDFs and the uncontaminated PDF is made with respect to the empirical values.

RESULTS AND DISCUSSIONS

Variance Contamination

Shown in Figure Sa are reliability computation results and a graphical display of a normal/nor-
mal stress-strength reliability model, where a 1% (¢ = 0.01) variance contamination was intro-
duced and scaled by K; = 4. The graphical display was obtained from application of
Equations 12 and 13, where N(us, asz) is defined in Equation 3. The graph shows an almost
undetectable difference between the contaminatéed and uncontaminated PDFs. This indicates
that the choice of € and K are reasonable with respect to the potential differences between
assumed and actual PDFs. However, the reliability values differ substantially (0.9) versus
0.998989). This implies that either one failure in a million or 1011 failures in a million is
predicted depending on the selection of PDFs which can differ in probability values by less
than 0.0005 in the extreme tail regions (see Figure 5b). Using "good” representative PDFs in
the stress-strength model in predicting only a single failure will occur in one million opera-
tions (e.g., number of flight hours) for R = 0.9(6) can result in a severe anticonservative esti-
mate since for almost identical PDFs, 1011 failures per million could also be predicted.

Normal siress-strength modeis
E_ Aeliabifty=.2900883 (Contaminaied Model: Dotted Line)
Contamnation: 1% lor ot POF'S With Variance Sceied By K{1)ed
Swess
Meane24
S.0.e24
! gﬂ
8.
-
o
L)
L T ¥ L] ¥ LI
1] 2 2 ° 50 © ;]

Sirees or Strencih

Figure 5a. Stress-strength normal functions with and without variance contamination.
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Normal sirees-strength modeis with contamination

Figure Sb. Detalled region of intersecting functions (see Figure 5a).

The accuracy of the high R estimates depends on the level of precision in defining the ex-
treme tail of PDFs. This requlres selecting a PDF from a data set that accurately represents
the known population function in the extreme tail repons with a probability difference of
much less than 0.0005. Unfortunately, this would require an unrealistically large data set. In
current practice, if a very large data set is not available, then PDFs are selected from smaller
sets with reliance on the functional representation in regions less than first ordered or greater
than the largest value.

The stress-stren;th procedure is quite effective for the range of R values between 0.5
and 0.95 since usually in the extrapolation process, a small difference in the extreme tail prob
abilities values will not effect the required accuracy in R. Reliability results from uncontami-
nated and variance contaminated (e = 0.05 and K; = 5) PDFs showed no differences for a
known R = 0.95. Unfortunately, in order to obtain high reliability, extrapolation into the ex-
treme tail of the PDFs is required, thereby increasing the required level of precision neces-
sary to distinguish between, for example, 0.998 and 0.9().

In order to demonstrate the uncertainties in selecting specific PDFs from empirical data
when compntmg high reliability values, the following displays are shown in Figure 6. In Fig-
ure 6a, a plot is shown of the empirical normal cumulative density function (CDF) and the
corresponding contaminated and uncontaminated normal distribution functions where the mean
is 50 and standard deviation (SD) is 5, with samp]e size H = 100. Reliability values are also
tabulated from the stress-strength model results using all six candidate functions. For exam-
ple, R(3 S) is the reliability obtained from variance contamination of 3% and a scale of 5
for variance. A statistical goodness-of-fit test'® that measures the relative differences in the
tail region of the distributions was applied in addition to visual inspection in order to estab-
lish if each function could represent the CDF of the ranked data. Results showed this to be
true; see Figure 6b for the tabulated observed significance level (OSL) which shows in all
cases OSL > 0.05, a requirement for the assumed function to be considered from the same
population as the empirical data.

514




COF

o |
A(U.C) = 9999995
- A1,3) = 9996235
R{1.9) = 9985887
R(3.3) = 9988714
@ R{(3.9) = 9957670
R(5,3) = 9981194
- |
(-]

— Uncontaminated Normal
~ mee 19 Contamination k(¥)=3
o =-= 1% Contamination k(1)=5|

—= 3% Contamination k{1)=3

—- 3% Contamination k(1)s5|

—s= 5% Contamination k(1)s3
°~ -

(-]
| ¥ 1
40 50 60
Strength
Figure 6a. Goodness-of-fit. empirical versus functional normal CDFs.
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Figure 6b. Lower tail of empirical/normal distributions (see Figure 6a).
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The results show that although each distribution fits the data quite well (see Figure 6b),
there is a large relative difference in R values: 0.9 for R(U.C) and 0.9957 for R(3, 5). In
Figure 7, the results are similar to those in Figure 5. The variance contamination was 1% with
a scale factor of 6 for both o5 and o,. Again, although the functions are similar, the relative
reliabilities differ substantially (0.9(s) versus 0.9977197). As was the case in Figure 5, severe conse-
quences could exist if R = 09() & assumed and the actual reliability was 0.9977197. This could re-
sult in a number of premature failures, 2280 in one million, compared to the assumed one failure
in a million. The results showed a low level of sensitivity to the selection of the factor K;.

Normal stress-strength models

Rellabilty=9999992 (Uncomaminated Modet: Solid Line)
Retigbilty=.9977197 (Contaminated Model: Dotted Line)
Contaminasion: 1% for Both POF's With Variance Scaled By K(1)e8

Figure 7. Reliabliity/normel functions with and without variance contamination.

Location Contamination

In Figure 8, reliability computation results and a graphical display of the stress-strength mod-
els are shown. The contaminated functions were obtained from 1% (¢ = 0.01) location contami-
nation as defined in Equation 13 where K3 = 4 and the (-) value is used for strength and (+)
value for stress. The contamination in this case represents a secondary failure mode not consid-
ered when assuming a specified function from the test results. For example, ignoring the possibil-
ity that one in every 100 parts may have a lower strength level, say 4 standard deviations from
the mean, can result in the reliabilities tabulated in the figure. That is, for the assumed correct
model, R = 0.9, and the actual case where there was a lower strength level having one
chance in 100 of occurring resulted in R = 0.999459, Figure 9 provides similar results to those
in Figure 8 except there is a greater difference in reliability values 0.9) versus 0.991012 due to
a greater shift (K = 6) in the mean value for the contaminated PDF. With a 1% contamina-
tion this result is predictable since one in a hundred times a failure should occur because
us - Kao is less than the mean of stress value. The above figure shows the consequences of
not being able to identify the correct function because of the inability to always detect a flawed
component. The result is the determination of an overly optimistic reliability value when the
true reliability could actually be orders of magnitude less.
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Probabibty

Probabbty

Normal stress-strength models

(R

Reliabiliye. 50990992 (Uncomaminaied Model: Sokd Line)

o | Rellabilly= 9984500 (Conaminated Model: Dotted Line)
° Siress Contamination: 1% jor Both POF’s With Locasion Scaied By K(2)e4
Mean=24
S.0s24
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Strength
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$.Da8.1
34
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1 L] 1 I T i
10 2 2 0 s 60
Siress or Strangth
Figure 8. Reliabiiity/normal functions with and without location contamination.
Normal stress-strength modeis
Reliability=.9909902 (Uncontaminated Model: Solid Line)
o Rellabilitys 9910122 (Contaminated Mode!: Dotted Line}
< Conlamination: 1% for Both POF's With Location Scaled By K(2)=8
Means24
S.D0e2.4
2
sl
Sirengin
Mean=51
§.0=8.1
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Q
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10 20 20 40 50 60

Stress or Strength

Figure 9. Rellability/normal functions with and without location contamination.
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The results in Figure 10 are similar to those in Figure 5 except these were obtained from
€ = 0.03 and K; = 3. If the estimated R = 0.9987350 is obtained from the empirical data
and a higher R value is required (R = 0.9()), then a material with either greater strength or
less contamination would be required. In order to obtain the required 0.9) from the origi-
nal contaminated model, a mean strength of 87 is required (see Figure 11). The mean of 87
requirement may not be acceptable to the designer, but this situation can occur if there is a
substantial amount of dispersion in the strength data resulting in a long-tailed PDF. The
above situation shows when a potentially over-design situation could occur because of the in-
ability to identify the correct PDF in the stress-strength model due to inherent sensitivity and
lack of information in the tail regions. This could prevent a good design from being ac-
cepted if it is required that the assessment of the design be based upon reliability only.

Normal stress-strength modeis

Reliability= 9900082 (Uncontaminated Model: Solid Line)
Reliability=.9987330 (Contaminated Modei: Dotted Line)
Contamination: 3% for Both PDF's With Varance Scaled By K(1)=3

Meana24
$0.024

Figure 10. Reiiabiiity/stress-strength with and without contamination.

The display in Figure 12 presents four possible reliability values for the case where the
means and standard deviation are: stress (24, 2.4) and strength (51, 5.1). The result from
the uncontaminated normal is 0.9). R = 0.995043 was obtained from the contaminated PDF
application. Since, as was shown previously, the stress-strength model will often provide ei-
ther relatively very high or low R values depending upon the chance selection of the PDFs.
In order to compensate for the uncertainty in selecting the PDFs for stress and strength data,
extreme value distributions are introduced (see Figure 2) in the reliability computation. This
resulted in R = 0.999045. Unfortunately, this did not provide a value lower than the contami-
nated model result of 0.9950428. In order to obtain additional conservatism in the R esti-
mate, a modification of a method by Bolotin is examined involving the determination of lower
bound on R (see Figure 4 and Equation 19) in conjunction with the extreme value PDFs.
The resuitant lower bound estimate of 0.9796063 provides a significantly lower value than that
of the contaminated model. This was also true for all contaminated models in this study.
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Probabikty

Probability

Normal stress-strength models ‘

Reliability=.9987350 {Solid Line)
Reliabifty= 9999992 (Dotted Line}
Contamination:3% for Al PDF’s with Variance Scaled By K(1)3

e
2-
Strength
Mean=87
§ 1 S.0.45.1
o el N S
(-]
T 1 1 V
0 60 80 100
Stress or Strength
Figure 11. Increased strength requirements for high reliability.
Extreme value stress-strength model
Reliability=.9990451
{Exireme Vaius Model)
M Reliabitty= 9796063
Bolotin Lower Bound (Extreme Vake)
Roliabilly= 909992
Stress {Uncontaminated Normal Model) Strength
- Reliability= .99504; Mean=51
N s.o..z?: (A Contaminated Norm.lz'M) S.D.=5.1
N -
-

Figure 12. Reliability comparison: PDFs and lower bound.
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This lower bound estimate could provide some security in estimating R, although results
may be excessively conservative for some pr"actical applications. In Table 1, the distribution
of R values as a function of the sample size is presented. R values were obtained from
repeated application of the uncontaminated streu-strength model of Figure 5 using randomly
selected, normally distributed samples. For a sample size of 10, R ranges from 0.9 to
0.998417 indicating the instability associated with small samples. Higher order quantiles
(e.g., 60%) were not included since they were all greater than 0.9().

Table 1. DISTRIBUTION OF R VERSUS SAMPLE SIZE

Reliabiltty R
Sample Size
Distribution
(%) 10 50 100 1000
0.1 0.998417 0.999832 0.969080 0.999008
(1583) (20) @
1 0.999160 0.990968 0.990091 0.999996
(840) 2 ©) @
10 0.999943 0.999994 0.999908 0.990999
(57 © @ (1)
25 0.999904 0.999996 0.999999 0.999999
©) @ (M (1)
50 0.999999 0.990900 0.999999 0.999999

(1) m U] v
() Gorresponding Number of Failures Per Miion

A sample size of 50 or 100 provides reasonable stability, and a sample of 1000 shows es-
sentially no variability. The results from Table 1 show that for a sample of 1000, an estimate
of R = 0.9¢5) would be acceptable This is not necessarily correct since results from the
table only address the sample size issue which is independent of the uncertainties in the PDF
selection process. There arc two requirements for obtaining accurate high reliability values
from the strength model: large samples (n > 1000) and knowledge of the population PDF.
Reliability estimates of 0.95 are much less sensitive to the PDF assumption. If there is a sec-
ondary failure mode due to occasional undetected poor manufacturing of the material or an
unusually large load occurs that is not accounted for in the design process, then unknown
lower reliability values (R < 0.95) can exist.

CONCLUSIONS

High reliability estimates from application of the statistical stress-strength model can vary sub-
stantially even for almost undetectable differences in the assumed stress and strength PDFs. Spec-
ifying high R values (e.g., 0.9)) for acceptable structural design can result in higher failure rates
thmanuapawdnfthemumedPDﬁeontanshmta&thmmﬂuﬂym Over-design situa-
tions can also occur when excessively long-tailed PDFs are applied to the stress-strength model.
An effective method for identifying this nonrobust behavior involved application of contaminated
and uncontaminated PDFs in the determination of reliability values.
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A suggested method for obtaining a lower bound on the reliability estimate provided po-
tentially overly conservative results but was effective in determing values that were lower than
any of the R values computed for the contaminated models.

The authors’ position regarding the computation of high reliability of 0.9(s) agrees with
Breiman!’ who says "The probability of failure Pt = 1 x 10 has an Alice in Wonderland
flavor and should be banned from nonfiction literature." It is therefore recommended that if
high reliability calculations are absolutely essential, then the results should be subjected to a
sensitivity analysis using contaminated distributions. High reliability values are meaningful only
when these values are not substantially affected by an amount of contamination (€) consistent
with the sample sizes, and a severity of contamination which is identified by engineering

judgement.
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